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The Big Picture

Recent crisis stressed the need of understanding systemic risk
generation and exposure in the banking industry.
Traditional regulatory tools focused on bank-specific variables
(e.g. capital ratios) and risk (e.g. default probabilities).
Macro-prudential regulation seeks tools to quantify the
systemic implication of individual bank’s behavior
⇒ e.g. banks that generate more systemic risk could face
more stringent requirements.

Our paper: develops such a tool using network theory.
Using a linear quadratic model, we can identify:

1 the amplification mechanism, or multiplier, of liquidity shocks;
2 the liquidity level key players (for bailout?);
3 the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy
interventions, liquidity injections, and Quantitative Easing.
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The Case Study: Intraday Liquidity in Payment System

On average, in 2009, £700bn of transactions were settled
every day across the two UK systems, CREST and CHAPS:
the UK nominal GDP settled every two days.
Daily Gross Settlement requires large intraday liquidity buffers.
Almost all banks in CHAPS regularly have intraday liquidity
exposures in excess of £1bn to individual counterparties. For
larger banks these exposures are regularly greater than £3bn.

⇒ We study banks’ intraday liquidity holding decision in the
network, and its implications for systemic liquidity risk.
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Why the Network Might Matter?
Several possible network effects, e.g.:

domino/contagion (e.g. Gai & Kapadia (2010));
free riding/strategic substitution (e.g. Bhattacharya & Gale
(1987));
economies of scale/"leverage stacks" strategic
complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
Flexible parametrization allows different “directions” of
network effects.
Allow network role to change over time.

⇒ Let the data speak:
Decompose risk into exogenous and network generated parts
⇒ time varying network generates heteroskedastic liquidity.
Construct Network Impulse-Response Functions to individual
banks’ shocks ⇒ akin to variance decomposition.
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Network
Objective Function and Equilibrium
Key Players

Network Specification

A directed and weighted network of n banks.
Network g : characterized by n-square adjacency matrix G with elements

gi,j , and gi,i = 0.
gi,j 6=i : the fraction of borrowing by Bank i from Bank j .
⇒ G is a (right) stochastic matrix and is not symmetric

A centrality metric (à la Katz-Bonacich) with decay φ

M(φ,G) = I + φG + φ2G2 + φ3G3 + ... =
∞∑

k=0
φkGk .

Note: If |φ| < 1, this converges to (I− φG)−1.
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Network
Objective Function and Equilibrium
Key Players

Bank Objective Function

Bank i decision variables:
qi : liquidity level of bank i absent bilateral effects.

qi = qi (x) := αi︸︷︷︸
fixed effect

+
M∑

m=1
βmxm

i︸ ︷︷ ︸
characteristics

+
P∑

p=1
βpxp

︸ ︷︷ ︸
common factors

zi : the network component of liquidity buffer stock.
⇒ li = qi + zi : is the observable liquidity holding of bank i .

8/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Network
Objective Function and Equilibrium
Key Players

Bank Objective Function

Bank i decision variables:
qi : liquidity level of bank i absent bilateral effects.

qi = qi (x) := αi︸︷︷︸
fixed effect

+
M∑

m=1
βmxm

i︸ ︷︷ ︸
characteristics

+
P∑

p=1
βpxp

︸ ︷︷ ︸
common factors

zi : the network component of liquidity buffer stock.
⇒ li = qi + zi : is the observable liquidity holding of bank i .

8/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Network
Objective Function and Equilibrium
Key Players

Bank Objective Function

Bank i decision variables:
qi : liquidity level of bank i absent bilateral effects.

qi = qi (x) := αi︸︷︷︸
fixed effect

+
M∑

m=1
βmxm

i︸ ︷︷ ︸
characteristics

+
P∑

p=1
βpxp

︸ ︷︷ ︸
common factors

zi : the network component of liquidity buffer stock.
⇒ li = qi + zi : is the observable liquidity holding of bank i .

8/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Network
Objective Function and Equilibrium
Key Players

Bank Objective Function

Bank i decision variables:
qi : liquidity level of bank i absent bilateral effects.

qi = qi (x) := αi︸︷︷︸
fixed effect

+
M∑

m=1
βmxm

i︸ ︷︷ ︸
characteristics

+
P∑

p=1
βpxp

︸ ︷︷ ︸
common factors

zi : the network component of liquidity buffer stock.
⇒ li = qi + zi : is the observable liquidity holding of bank i .

8/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Network
Objective Function and Equilibrium
Key Players

Bank Objective Function cont’d

A quadratic payoff function for buffer stock liquidity

ui (zi |g) = µ̂i

zi + ψ
∑

j
gijzj


︸ ︷︷ ︸

Accesible Liquidity

−1
2γ

zi + ψ
∑
j 6=i

gijzj

2

+ ziδ
∑

j
gijzj︸ ︷︷ ︸

Collateralized
Liquidity

µ̂i/γ = µ̄i + νi ∼ i .i .d
(
0, σ2i

)
bilateral network influence:

∂2ui (z |g)

∂zi∂zj
= (δ − γψ) gij

Note : g predetermined at decision time (but can change over time).
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Bank Objective Function cont’d

A quadratic payoff function for buffer stock liquidity

ui (zi |g) = µ̂i

zi + ψ
∑

j
gijzj


︸ ︷︷ ︸

Accesible Liquidity

−1
2γ

zi + ψ
∑
j 6=i

gijzj

2

+ ziδ
∑

j
gijzj︸ ︷︷ ︸

Collateralized
Liquidity

µ̂i/γ = µ̄i + νi ∼ i .i .d
(
0, σ2i

)
bilateral network influence:

∂2ui (z |g)

∂zi∂zj
= (δ − γψ) gij

Note : g predetermined at decision time (but can change over time).
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(Decentralized) Equilibrium Outcome

Eq.um : (Nash) If |φ| < 1

z∗i = µ̄i + φ
n∑

j=1
gi ,jzj + vi

⇒ l∗i = qi (x) + z∗i = qi (x) + {M (φ,G)}i . µ

where µ := γ−1 [µ̂1, ..., µ̂n]′, {}i . is the row operator, and

φ :=
δ

γ
− ψ

Note:
If φ > 0 complementarity (reciprocate/herding/leverage stacks e.g. Moore

(2011)).
If φ < 0 substitutability (free ride à la Bhattacharya and Gale (1987)).
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Key Players
The total liquidity originating from the network externalities is

1′z∗ = 1′M (φ,G) µ̄︸ ︷︷ ︸
level effect

+ 1′M (φ,G) v︸ ︷︷ ︸
risk effect

where z∗ ≡ [z∗1 , ..., z∗n ]′, µ̄ ≡ [µ̄1, ..., µ̄n]′, v ≡ [v1, ..., vn]′

⇒ tradeoff: both terms increasing in φ (for µ̄ > 0).

Risk Key Player: (the one to worry about...)

max
i

∂1′z∗

∂vi
σi = max

i
1′ {M (φ,G)}.i σi → outdregree centrality

Level Key Player: (the one you might want to bailout...)

max
i

E
[
1′z∗ − 1′z∗\i

]
= max

i
{M (φ,G)}i. µ̄+ 1′ {M (φ,G)}.i µ̄i −mi,i µ̄i

indegree centrality + shock analogous − correct double counting
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Planner
A planner chooses zi , i = 1, , ...n to maximize the total

max
z1,...,zi ,...zn

∑
i

[
µ̂i

(
zi + ψ

∑
j

gij zj

)
+ ziδ

∑
j

gij zj −
1
2
γ

(
zi + ψ

∑
j 6=i

gij zj

)2]
.

FOC:

zi = µi + φ
∑
j 6=i

gij zj︸ ︷︷ ︸
decentralized f.o.c.

+ ψ
∑
j 6=i

gjiµj︸ ︷︷ ︸
neighbors’ idiosyncratic

valuations of own liquidity

+

φ
∑
j 6=i

gji zj︸ ︷︷ ︸
neighbors’ indegree
i.e. own outdegree

− ψ2
∑
j 6=i

∑
m 6=j

gji gjmzm︸ ︷︷ ︸
volatility of neighbors’

accessible network liquidity
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Empirical Model

SEM: the theoretical framework is matched by a Spatial Error Model

li ,t = αi +
M∑

m=1
βbank

m xm
i ,t +

P∑
p=1

βtime
p xp

t + zi ,t

zi ,t = µ̄i + φ
n∑

j=1
gi ,j,tzj,t + νi ,t , νi ,t ∼ iid

(
0, σ2i

)
,

where gi ,j,t , xm
i ,t and xp

t are predetermined at time t.

Note: 1 Network as a shock propagation mechanism
⇒ (average) Network Multiplier: 1/ (1− φ)
2 Total liquidity, Lt ≡ 1′ [l1,t , ..., ln,t ], is heteroskedastic:

Vart−1 (Lt) = 1′M (φ,Gt) diag
({
σ2i
}n

i=1

)
M (φ,Gt)′ 1.

3 Can perform Q-MLE (φ overidentified if rank (M (φ,Gt)) > 2)
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Empirical Model: Specification Test

SDM: For robustness, we also consider a direct network effect of
banks observable characteristic, liquidity decisions, and
possible match specific control variables, xi ,j,t (Spatial Durbin
Model)

li ,t = ᾱi +
M∑

m=1
βbank

m xm
i ,t +

P∑
p=1

γtime
p xp

t

+ψ
n∑

j=1
gi ,j,t lj,t +

n∑
j=1

gi ,j,txi ,j,tθ + vi ,t

Note: if xi ,j,t := vec(xm
j 6=i ,t)′, ψ = φ, θ = −φvec(βbank

m ),
γtime

p = (1− φ)βtime
p ∀p ⇒ back to SEM

⇒ this more general spatial structure provides a specification test
for our model.
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Network Impulse-Response Functions
The network impulse-response of total liquidity, Lt , to a one
standard deviation shock to bank i is

NIRFi (φ,Gt , σi ) ≡
∂Lt
∂νi ,t

σi = 1′ {M (φ,Gt)}.i σi

NIRFs: 1 are pinned down by the outdegree centrality and

Risk Key Player ≡ argmax
i

NIRFi (φ,Gt , σi )

2 account for all direct and indirect links among banks since

1′ {M (φ,Gt)}.i = 1′
{

I+φGt + φ2G2
t + ...

}
.i = 1′

{ ∞∑
k=0

φkGk
t

}
.i

3 are a natural decomposition of total liquidity variance

Vart−1 (Lt) ≡ vec
(
{NIRFi (φ,Gt , σi )}n

i=1

)′ vec
(
{NIRFi (φ,Gt , σi )}n

i=1

)
.
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Network Description
Network Banks: all CHAPS members in 2006-2010

Bank of Scotland
Barclays
Citibank
Clydesdale

Co-operative Bank
Deutsche Bank
HSBC
Lloyds TSB

NatWest/RBS
Santander
Standard Chartered

video clustering

Note: non CHAPS members have to channel their payments through
these banks.

Network Proxy:
proxy the intensity of network links using the interbank
borrowing relations

⇒ gi ,j,t = the fraction of bank i ’s loans borrowed from bank j
Note: weights computed as monthly averages in previous month.

e-value
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Other Data Description
Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the
day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available;
Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment
Time; time trend.

Banks Characteristics: (lagged)

Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time;
Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity
Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and
Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative
Change in Retail Deposit to Total Asset Ratio; Total Lending and
Borrowing in Interbank Market; Stock Return; CDS.

18/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Other Data Description
Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the
day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available;
Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment
Time; time trend.

Banks Characteristics: (lagged)

Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time;
Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity
Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and
Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative
Change in Retail Deposit to Total Asset Ratio; Total Lending and
Borrowing in Interbank Market; Stock Return; CDS.

18/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Other Data Description
Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the
day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available;
Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment
Time; time trend.

Banks Characteristics: (lagged)

Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time;
Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity
Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and
Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative
Change in Retail Deposit to Total Asset Ratio; Total Lending and
Borrowing in Interbank Market; Stock Return; CDS.

18/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Other Data Description
Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the
day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available;
Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment
Time; time trend.

Banks Characteristics: (lagged)

Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time;
Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity
Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and
Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative
Change in Retail Deposit to Total Asset Ratio; Total Lending and
Borrowing in Interbank Market; Stock Return; CDS.

18/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Other Data Description
Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the
day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available;
Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment
Time; time trend.

Banks Characteristics: (lagged)

Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time;
Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity
Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and
Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative
Change in Retail Deposit to Total Asset Ratio; Total Lending and
Borrowing in Interbank Market; Stock Return; CDS.

18/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Other Data Description
Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the
day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available;
Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment
Time; time trend.

Banks Characteristics: (lagged)

Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time;
Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity
Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and
Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative
Change in Retail Deposit to Total Asset Ratio; Total Lending and
Borrowing in Interbank Market; Stock Return; CDS.

18/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Estimation Results

Two types of estimation:
1 Subsample estimations:

(good times) Pre Hedge Fund Crisis/ Northern Rock
(fin. crisis) Hedge Fund Crisis – Asset Purchase Program Announcement

(Q.E.) Post Asset Purchase Program Announcement Agg. Liq.

2 Rolling estimations with 6-month window ⇒ allow φ to
change at higher frequency.
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SEM Estimation

Period 1 Period 2 Period 3
Network Effect: φ 0.640

(52.44)
∗ 0.166∗

(7.06)
−0.151∗
(−6.45)

R2 69.11% 89.71% 85.54%

(average) Network Multiplier 2.77∗ 1.12∗ 0.87∗
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φ, Ḡ, 1

)
– Risk Key Players

1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6

Pre Northern Rock/Hedge Fund Crisis

bank index

E
xc

es
s 

N
IR

F

o Excess NIRF
+/- 2 s.e. C.I.
Excess network multiplier
+/- 2 s.e. C.I.

Bank 1 Bank 2 Bank 3

Bank 4

Bank 5

Bank 6

Bank 7 Bank 8

Bank 9

Bank 10 Bank 11

21/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Theoretical Framework
Empirical Analysis

Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Period 1: Net Borrowing
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Period 1: Network Borrowing/Lending Flows
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Note: network risk reduction despite increased borrowing & lending
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φ̂: SEM Rolling Estimation (6-month window)
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φ̂ and ψ̂: SEM and SDM Rolling Estimation (6-month window)
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Allen & Gale (2000); Freixas, Parigi & Rochet (2000); Allen,
Carletti & Gale (2008); Bhattacharya & Gale (1987), Moore (2011)

Empirical work
Liquidity provision in payment systems

Furfine (2000): Fed fund rate is related to payment flows
Acharya & Merrouche (2010) and Ashcraft, McAndrews &
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Conclusions
We provide:

an implementable approach to assess interbank network risk:
1 network shocks multiplier
2 risk, and level, key players identification
3 network impulse-response functions

Empirical Findings:
1 First estimation of network risk multiplier ⇒ a significant

shock propagation mechanism for liquidity
2 The network multiplier and risk:

vary significantly over time, and can be very large.
implies complementarity (and high risk) before the crisis.
it’s basically zero post Bearn Stearns ⇒ rational reaction.
indicates free riding on the liquidity provided by the
Quantitative Easing.

3 most of the systemic risk is generated by a small subset of key
players (and not necessarily the obvious ones).
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Cohesiveness

Q: How cohesive is this network?
A: Average Clustering Coefficient (Watts and Strogatz, 1998)

ACC =
1
n

n∑
i=1

CLi (G),

CLi (G) =
#{jk ∈ G | k 6= j , j ∈ ni (G), k ∈ ni (G)}

#{jk | k 6= j , j ∈ ni (G), k ∈ ni (G)}

where n is the number of members in the network and ni (G) is
the set of players between whom and player i there is an edge.

Numerator: # of pairs of banks linked to i that are also linked to each
other

Denominator: # of pairs of banks linked to i
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Data
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Network Evolution
Full SEM Results

SEM Estimation

Period 1 Period 2 Period 3
R2 69.11% 89.71% 85.54%
Network Effect: φ 0.6400

(52.44)
∗ 0.1660∗

(7.06)
−0.1510∗

(−6.45)

Macro Controls
Aggregate Liquidity (log) −0.0020

(−0.04)
0.3324∗

(4.59)
0.5974∗
(14.73)

Right Kurtosis of Payments −0.1654∗
(−2.39)

0.0265
(1.12)

0.0031
(1.01)

Volatility of Liquidity (log) 0.1750
(1.37)

0.1935∗
(7.15)

0.0075
(0.52)

Turnover Rate 0.0097
(1.51)

0.0055∗
(2.87)

0.0049∗
(2.07)

LIBOR 0.6456∗
(2.16)

0.3216∗
(6.48)

−0.1633
(−1.12)

Interbank Rate Premium 1.9305∗
(2.75)

−0.0505
(−0.61)

0.9514∗
(2.86)

Constant 16.0761∗
(5.14)

10.7165∗
(5.66)

11.7844∗
(9.70)

44/31 Denbee, Julliard, Li and Yuan Network Risk and Key Players 	�



Data
Additional Estimation Result

Network Evolution
Full SEM Results

SEM Estimation cont’d
Bank Characteristics

Interbank Rate −0.5096
(−1.72)

−0.2977∗
(−6.02)

0.1414
(1.0428)

Intraday Payment Level (log) −0.1558∗
(−5.73)

−0.1595∗
(−8.87)

0.0478∗
(2.51)

Right Kurtosis of Payment In 0.0359
(1.90)

−0.0045
(−0.26)

−0.0395∗
(−3.39)

Right Kurtosis of Payment Out 0.1416∗
(8.17)

0.1742∗
(15.89)

0.0426∗
(4.16)

Vol of Liquidity Available (log) 0.0558∗
(39.72)

0.0524∗
(50.23)

0.0417∗
(36.73)

Liquidity Used (log) 0.0303∗
(3.00)

−0.0023
(−0.34)

0.0052
(0.68)

Top 4 Bank in Payment Activity 1.3374∗
(26.97)

1.6815∗
(46.31)

2.3738∗
(57.18)

Repo Liability / Assets −0.7721
(−0.92)

0.7401∗
(14.46)

0.0575
(0.64)

Change in Deposit / Assets 0.5050
(0.68)

−1.3275∗
(−6.65)

−1.2503∗
(−3.70)

Total Lending and Borrowing (log) 0.1209∗
(3.56)

0.0249
(0.99)

−0.3231∗
(−23.70)

CDS (log) −0.0652
(−1.49)

−0.0274∗
(−3.17)

0.0514∗
(4.55)

CDS Missing Dummy −2.1893∗
(−11.38)

−2.2618∗
(−32.04)

−0.8502∗
(−8.37)
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Period 1: Net Borrowing
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Period 2: Net Borrowing
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Period 3: Net Borrowing
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Period 1: Network Borrowing/Lending Flows
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Period 2: Network Borrowing/Lending Flows
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Period 3: Network Borrowing/Lending Flows
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